skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Yixiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Disinfection robots have applications in promoting public health and reducing hospital acquired infections and have drawn considerable interest due to the COVID-19 pandemic. To disinfect a room quickly, motion planning can be used to plan robot disinfection trajectories on a reconstructed 3D map of the room’s surfaces. However, existing approaches discard semantic information of the room and, thus, take a long time to perform thorough disinfection. Human cleaners, on the other hand, disinfect rooms more efficiently by prioritizing the cleaning of high-touch surfaces. To address this gap, we present a novel GPU-based volumetric semantic TSDF (Truncated Signed Distance Function) integration system for semantic 3D reconstruction. Our system produces 3D reconstructions that distinguish high-touch surfaces from non-high-touch surfaces at approximately 50 frames per second on a consumer-grade GPU, which is approximately 5 times faster than existing CPU-based TSDF semantic reconstruction methods. In addition, we extend a UV disinfection motion planning algorithm to incorporate semantic awareness for optimizing coverage of disinfection trajectories. Experiments show that our semantic-aware planning outperforms geometry-only planning by disinfecting up to 20% more high-touch surfaces under the same time budget. Further, the real-time nature of our semantic reconstruction pipeline enables future work on simultaneous disinfection and mapping. Code is available at: https://github.com/uiuc-iml/ RA-SLAM 
    more » « less